Wireless: MIMO e Multi-User MIMO

Uma das principais funcionalidades dos padrões WiFi 802.11n e 802.11ac reside na camada física do modelo OSI, que utiliza a tecnologia multiple-input, multiple-output (MIMO). A tecnologia oferece o uso de múltiplos rádios e antenas, chamados de radio chains. Os rádios MIMO transmitem múltiplos sinais ao mesmo tempo para tomar vantagem sobre o sinal multipath.

O Multipath é um fenômeno de propagação do sinal que resulta em dois ou mais caminhos do mesmo sinal sendo recebido por uma antena com a diferença de nanosegundos. Devido à natureza do espalhamento das ondas (do sinal RF) e comportamentos de propagação como reflexão, espalhamento, difração e refração poderão ocorrer no sinal, ocasionando o multipath.

As antenas com tecnologia MIMO utilizam-se do DSP (digital signal processing) para separar o sinal original transmitido. Em fato, múltiplos sinais enviados pelo transmissor MIMO podem chegar simultaneamente ao receptor, o sinal então pode ser cancelado e a performance será basicamente a mesma de um sistema não-MIMO.

Antigamente, os DSP’s, ou Processadores de Sinal Digital não eram tão desenvolvidos. Hoje,  os processadores possuem maior poder computacional e são capazes de recuperar o sinal transmitido ao receptor em diferentes intervalos de tempo.

Os DSP’s então têm a responsabilidade de receber os dados, ‘separar’ em diferentes partes, enviar cada parte por antenas diferentes – ao mesmo tempo, no mesmo canal. E fazer o processo inverso no receptor.

Radio Chains

Os rádios legados 802.11 transmitem e recebem sinal RF utilizando o sistema single-input, single-output (SISO), utilizando um radio chain que é um rádio que suporta toda arquitetura, incluindo mixers, amplificadores e conversores digital/analógico.

A tecnologia MIMO consiste em múltiplos radio chains onde cada um possuirá sua própria antena. Um sistema MIMO é caracterizado pelo número de transmissores e receptores utilizados por diversos radio chains. Por exemplo, um sistema 2×3 MIMO poderá consistir em 3 radio chains com 2 transmissores(TX) e 3 receptores(RX), já um sistema 3×3 MIMO poderá utilizar 3 radio chains para transmissão(TX) e recepção(RX).    

O uso de múltiplos transmissores em um sistema MIMO provem a transmissão de mais dados utilizando multiplexação espacial. O uso de múltiplos receptores aumenta a relação sinal ruído (SNR).

Multiplexação espacial

Um rádio MIMO tem habilidade de enviar fluxos de dados únicos de maneira independente. Cada fluxo de dados independente é conhecido como fluxo espacial (spatial stream) e cada fluxo único pode conter dados que são diferentes dos outros fluxos transmitidos por um ou mais rádios. Cada fluxo irá atravessar diferentes caminho caminhos até o receptor, chamado de diversidade espacial (spatial diversity). O envio de diversos fluxos independentes de um único dado utilizando spartial diversity é geralmente referenciado também como spatial multiplexing (SM) ou spatial diversity multiplexing (SDM).

O benefício de enviar fluxo diversos para um único dado é o aumento da largura de banda.

 Na imagem abaixo mostramos um AP MIMO 3×3:3 transmitindo 3 independentes fluxos de um único dado  para um cliente MIMO 3×3:3.

Geralmente os fabricantes utilizam a sintaxe de 3 números para indicar a capacidade de transmissão dos APs, por exemplo 3×3:2: O primeiro número informa a transmissão (TX), o segundo a recepção (RX) e o terceiro número representa a quantidade de fluxos únicos de dados podem ser enviados e recebidos.

Em boas condições, quando um AP 3×3:3 e um cliente 3×3:3 estão comunicando entre si, 3 fluxos espaciais podem ser utilizados para comunicação unicast. Entretanto, quando um AP 3×3:3 comunica com um cliente 2×2:2, somente dois fluxos espaciais serão utilizados para comunicação unicast. Isso será definido durante a conexão ao BSS (basic servisse set), o access point é avisado sobre as capacidades MIMO do cliente.

Multi-User MIMO

Os padrões 802.11n e 802.11ac permitem o uso do MIMO para transmissão de múltiplos fluxos  de dados transmitidos  em diferentes antenas ao mesmo tempo. O padrão 802.11ac também permite a comunicação simultanea com até 4 dispositivos utilizando a tecnologia MU-MIMO. Os rádios 802.11n não suportam MU-MIMO, mas podemos dizer que eles utilizam a tecnologia SU-MIMO (single-user MIMO).

Ambos, 802.11n e 802.11ac são capazes de transmitir múltiplos fluxos de dados, mas muitos equipamentos devido a limitações são capazes de receber apenas um fluxo de dados.

O objetivo do MU-MIMO é o uso de diversos fluxos espaciais quando possível, transmitindo  dados para múltiplos clientes ao mesmo tempo, seja na transmissão para um cliente de 4 fluxos espaciais ou 4 clientes utilizando um fluxo espacial cada,

Com o Multi-User MIMO (MU-MIMO), os APS podem utilizar a sintaxe de 5 números para indicar a capacidade de transmissão dos APs, assim como no MIMO, o primeiro número informa a transmissão (TX), o segundo a recepção (RX) e o terceiro número representa a quantidade de fluxos únicos de dados podem ser enviados e recebidos. O terceiro número representa quantos fluxos de dados de usuário único (SU) podem ser enviados ou recebidos. O quarto número refere quantos fluxos de múltiplos usuários (MU) podem ser transmitidos. Um quinto número é usado para representar um grupo MU-MIMO ou quantos clientes MU-MIMO estão recebendo transmissões ao mesmo tempo. Por exemplo 4×4:4:3:3. O AP pode transmitir e receber 4 fluxos espaciais para 1 usuário (SU-MIMO). Entretanto somente 3 fluxos espaciais podem ser enviados (MU-MIMO) para 3 clientes com capacidade MU-MIMO.

Referências

http://www.telecomhall.com/br/o-que-e-mimo.aspx

COLEMAN, David D.; WESTCOTT, David A. CWNA Certified Wireless Network Administrator – 5ª ed. Sybex – 2018 Aruba Certified Design Professional_ Official Certification

Wireless Aruba – Nomenclatura dos APs

Os pontos de acesso da Aruba possuem alto desempenho e são referências no mercado através de funcionalidades que utilizam otimização de RF com inteligência artificial, hardware e OS focados no fornecimento da melhor experiência ao usuário.

Os APs também agregam serviços que suportam dispositivos IoT com protocolos Wi-Fi, Zigbee, Bluetooth etc. Uma dica interessante é que os pontos de acesso possuem uma estrutura de nomes que podem ajudar a identificar a sua capacidade e função.

Os primeiros dígitos indicam o suporte ao padrão WLAN:

• 1: 802.11n
• 2: 802.11ac wave 1
• 3: 802.11ac wave 2
• 5: 802.11ax

Os dígitos seguintes indicam o tipo de ponto de acesso:

• 0: AP de entrada para ambiente indoor
• 1: Padrão para ambiente indoor
• 2,3 e 5: Indoor de alta densidade
• 6: AP de entrada para ambiente outdoor
• 7: Outdoor

Os últimos dígitos com valor ímpar representam os APs com antenas internas, já os APs com dígito final par, indicam os conectores para antenas externas. Caso o access point tenha uma letra no final como o H, significa que é designado para ambientes hospitalares, R para Teleworkers.

Caso tenha dúvidas referente a funcionalidades e especificações dos APs, procure o datasheet de cada modelo, nele é possível encontrar dos detalhes mais importantes do equipamento.

Por exemplo datasheet da serie Aruba AP 530: https://www.arubanetworks.com/assets/ds/DS_AP530Series.pdf

Já para os acessórios e antenas utilize o ordering guide de cada serie para identificar os itens necessários para implementação do ponto de acesso.

Por exemplo o ordering guide da serie Aruba AP 370: https://www.arubanetworks.com/assets/og/OG_AP-370Series.pdf

Referências

Aruba Certified Design Associate_ Official Certification Study Guide ( HPE6-A66)

Wireless Aruba – Modo de encaminhamento para os Access Points

Quando uma estação encaminha seus quadros para um Ponto de Acesso, existem diversas maneiras para o AP processar e encaminhar os dados, tudo dependendo de como o Access Point é configurado. 

Um Access Point configurado como IAP não necessita de uma Controller, pois todos os AP que estão na mesma sub rede irão formar um Cluster Virtual e operam independente da Controladora física.

Já os Pontos de acesso gerenciado por uma Controladora, devem ter seu tráfego permitido na rede (caso haja restrições de tráfego na rede).

O modo de encaminhamento (forwarding mode) define como os dados enviados pelo usuário são encaminhados pelo AP e podem ser classificados como:

  • GRE/tunnel
  • Bridge
  • Decrypt-tunnel
  • Split-Tunnel

Alguns termos nesse texto são utilizados com o mesmo significado:

Controladora = Controller = Mobility Controller

Quadros = Frames

Access Point = AP = Ponto de Acesso

GRE/Tunnel

Esse modo utiliza um Tunnel GRE para encaminhar os dados do Access Point para a Mobility Controller. Quando um cliente envia um dado para um SSID (em um AP) que é configurado para utilizar o forwarding mode como tunnel mode, o AP encapsula o quadro 802.11 dentro de um frame 802.3 e encaminha o quadro para a Controladora Aruba.

Nesse processo nem todos os frames são tunelados e encaminhados a controladora, os quadros 802.11 para autenticação e resposta de associação são gerados diretamente no AP.

Para o tráfego que é encapsulado e enviado a controladora, a Mobility Controller removerá o encapsulamento no recebimento, aplicará regras de firewall ao tráfego do usuário e encaminhará o tráfego como solicitado.

Um Access Point Aruba configurado como Campus (CAP), todo tráfego de controle é comunicado com a controladora utilizando o protocolo PAPI, que não é criptografado. Caso haja a necessidade de criptografar a comunicação PAPI é sugerido a utilização juntamente com o CPsec (Control Plane Security) que criptografa a comunicação PAPI com IPsec.

Já os APs configurados como Remote (RAP), a comunicação deverá utilizar um túnel VPN L2TP/IPsec.

Com o modo túnel, todo tráfego é enviado para a Controller que é responsável por prover a visibilidade das configurações e trafego dos usuários de forma centralizada, facilitando a configuração das redes WLAN.

Bridge

O mode bridge permite ao Access Point (não a Controladora) processar os quadros, de forma similar aos APs individuais processam as informações. O AP irá responder qualquer requisição de autenticação e associação com as respostas referentes ao processo, removendo a criptografia dos frames recebidos  e criptografando os quadros de saída para a estação.

 O modo bridge também pode ser configurado em APs configurados como CAP e RAP, mas a sua comunicação com a Mobility Controller deverá ser criptografada com CPsec (CAP) e túnel L2TP/IPsec para RAP.

A Aruba não recomenda esse modo em razão do firewall stateful não ser aplicado.

Decrypt-Tunnel

Este método possui similaridade com o modo tunnel, entretanto os quadros enviados pelo cliente têm a sua criptografia removida e encaminhada dessa forma para a Controladora, encapsulando apenas o quadro 802.11 em um quadro 802.3.

Uma imagem contendo captura de tela

Descrição gerada automaticamente

Esse cenário pode ser utilizado para propósitos de segurança para inspeção e monitoração do tráfego por outras ferramentas ou diminuir o processamento ocorrido no processo de criptografia.

O modo decrypt só pode ser utilizado com RAP e CAP. Todo trafego de sinalização entre a controladora e o ponto de acesso deve ser criptografada com CPsec(CAP) ou L2TP/IPsec (RAP).

O modo decrypt deve ter uma atenção especial em cenários com RAP, pois o tráfego do usuário não é criptografado pelo RAP, criando um risco de segurança para o tráfego sobre a rede pública (Internet).

Split Tunnel

O modo split tunnel é disponível nos RAPs, e é também conhecido com policy-based forwarding.  Quando um RAP constrói um tunnel L2TP/IPsec com a Controladora, não é recomendável encaminhar todo tráfego de usuário pela Internet para a Mobility Controller, por isso é possível criar regras de encaminhamento de firewall para processar o tráfego wireless diretamente no RAP. Essas regras podem permitir o tráfego dos usuários serem encaminhado localmente ou para a Controladora, de acordo com as necessidades, como por exemplo, o trafego HTTP/HTTPS sair diretamente para a Internet.

Referências

Aruba Certified Design Professional_ Official Certification Study Guide ( HPE6-A47)

Westcott, David. – Understanding ArubaOS

Wireless Aruba – Tipos de implementações para os Access Points

Uma das grandes vantagens dos Access Point Aruba é a utilização do mesmo equipamento em diversos cenários, como os APs trabalhando de modo independente, ou em cluster, gerenciado por uma Controladora física, Controladora virtual ou mesmo em nuvem. Agora os Access Point podem também serem chamados de UAP (Unified Access Point) e configurados de diversas maneiras e com funções especificas dentro da arquitetura WLAN, como por exemplo:

– Campus AP (CAP): também chamado de CAP, é um típico Access Point que será conectado a uma controladora, que fará o seu gerenciamento.

– Mesh APs: São APs para Campus que usam a interface de rádio como uplink. O Mesh Portal (AP) tem uma conexão física para rede corporativa. O Mesh Point (AP) utiliza seu rádio para acesso à rede corporativa.

– Air monitors (AMs): Efetuam a varredura da rede Wifi para coletar informações de RF e IDS

– Spectrum APs (SA): São Access Points configurados (de forma temporária ou permanente) para capturar sinais de rádio para análise, como por exemplo em cenários de interferência, documentação e/ou mapeamento.

– Remote AP (RAP): Atuam de forma similar ao Campus AP, mas normalmente acessam a Internet para comunicação com a controller através de um túnel VPN. Um RAP pode também ser configurado como um Remote Mesh portal, que é basicamente um RAP com funções de Mesh portal.

– Instant APs (IAPs): não necessitam de uma controladora. Todos os IAPs na mesma sub rede irão comunicar-se e formar uma Virtual Controller (VC) então eles podem operar de forma independente de uma controladora física. 

Um ponto de atenção: tome cuidado ao converter seu Access Point em ambiente de produção. Pesquise, faça testes e alterações em ambientes de laboratório, antes de coloca-lo na rede operacional.

Referências

Aruba Certified Design Professional_ Official Certification Study Guide ( HPE6-A47)

https://blogs.arubanetworks.com/solutions/aruba-unified-ap-platform/

802.3bt – Power Over Ethernet

O crescimento do mercado de dispositivos IoT e as mais recentes tecnologias de rede sem fio como Wifi 5 Wifi 6 (802.11ax) tem demandando uma atenção especial à escolha dos Switches com capacidade Power over Ethernet, tecnologia que combina envio de dados e energia elétrica sobre um único cabo Ethernet.

Ao eliminar a necessidade para cabos separados de dados e energia, o PoE fornece vantagens da simplicidade e economia de custos, além de adicionar novos recursos de controle de dispositivo inteligente.

Impulsionado pela necessidade dos novos dispositivos “Internet das coisas”, a tecnologia PoE evoluiu com o introdução do padrão IEEE 802.3bt. Esse novo padrão permite que Switches e dispositivos energizados operem acima de 30 Watts por porta, suportando agora de 60 até 90 Watts de PoE.

Padrões para Power Over Ethernet

Em 2003, o IEEE publicou o padrão 802.3af, que descreveu as características do Power over Ethernet (PoE) em até 15,4 W de energia, executando 10BASE-T e 100BASE-T. A energia é fornecida em dois dos quatro pares trançados nos cabos Cat 3 ou acima.

Em 2009, o IEEE introduziu o 802.3at, também conhecido como padrão PoE+. Esta atualização permitiu a entrega de até 30 W em 1000BASE-T suportado em CAT 5 ou 6. Enquanto o PoE + alterna suporte a dispositivos que requerem maior potência, o padrão também pode detectar dispositivos que exigem 13 watts ou menos para fornecer o nível de energia necessário.

Em 2013, o IEEE anunciou o grupo de estudo para a criação de 802.3bt, que definiu o PoE em quatro pares e inclui suporte para 10GBASE-T, 5GBASE-T e 2.5GBASE-T em CAT5e ou superior. Essa nova tecnologia usa todos os 4 pares em um cabo Ethernet para fornecer energia e dados no mesmo meio. O padrão IEEE 802.3bt foi finalizado em setembro de 2018 e define dois tipos de PoE:

• Tipo 3 que suporta até 60 Watts
• Tipo 4 que suporta até 90 Watts

Embora novos recursos tenham sido adicionados, a ideia é que o padrão funcione com dispositivos legados Tipo 1 e Tipo 2. Desde que o PSE seja capaz (em termos de potência) de suportar o PD e ambos sejam compatíveis com o padrão.

Dentre os novos dispositivos alimentados pelo padrão podemos destacar:

  • Edifícios inteligentes com IoT corporativa (iluminação LED conectada);
  • Cidades seguras (câmeras PTZ);
  • Quiosques;
  • Terminais de ponto de venda (POS)
  • Thin clientes
  • Access Points
  • Etc;

Referências

https://www.arubanetworks.com/assets/tg/TB_High-Power-PoE.pdf

https://en.wikipedia.org/wiki/Power_over_Ethernet