ArubaOS-CX: Entendendo o Checkpoint

A funcionalidade checkpoint nos Switches ArubaOS-CX é um registro da configuração em execução (running-config) do switch e seus metadados referentes ao tempo.

O checkpoint pode ser utilizado pelo administrador para aplicar a configuração armazenada em um ponto de verificação (checkpoint) escolhido quando necessário, como por exemplo, para reverter para uma configuração anterior.

Os switches ArubaOS-CX são capazes de armazenar vários pontos de verificação.

Um checkpoint da configuração pode ser gerado após 5 minutos de inatividade automaticamente (após uma mudança de configuração) ou então gerado pelo usuário administrador.

Para cada alteração de configuração, o contador de tempo limite é reiniciado.

O checkpoint gerado pelo sistema possuirá o formato CP<YYYYMMDDHHMMSS>.

Já o checkpoint gerado pelo usuário poderá utilizar um nome customizado para a configuração.

Para validar a os checkpoint gerados digite:

 SW-Access1# show checkpoint list
CPC20210223231221
CPC20210224020931
startup-config

Para gerar um checkpoint digite:

SW-Access1# copy running-config checkpoint TESTE1
Configuration changes will take time to process, please be patient.
! Gerando uma checkpoint chamado TESTE1

Após mudança na configuração e o desejo de mudança para a configuração anterior do checkpoint TESTE1, digite:

SW-Access1# copy checkpoint TESTE1 running-config 
Configuration changes will take time to process, please be patient.
! Copiando o checkpoint TESTE1 para a running-config

Para validar todos os checkpoint digite:

SW-Access1#  show checkpoint list all
|NAME                                              |TYPE                |WRITER              |DATE(UTC)                     |HARDWARE  
          |IMAGE VERSION       |
|CPC20210223231221                                 |checkpoint          |System              |2021-02-23T23:12:21Z          |6300      
          |FL.10.04.3031       |
|CPC20210224020931                                 |checkpoint          |System              |2021-02-24T02:09:31Z          |6300      
          |FL.10.04.3031       |
|startup-config                                    |startup             |User                |2021-02-24T02:14:40Z          |6300      
          |FL.10.04.3031       |
|TESTE1                                            |latest              |User                |2021-02-24T02:15:24Z          |6300      
          |FL.10.04.3031       |
		  

Todos os checkpoints gerados pelo usuário incluem um carimbo de data/hora para identificar quando um ponto de verificação foi criado.

No máximo 32 checkpoints podem ser gerados pelo usuário.

No máximo 32 checkpoint de sistema podem ser criados. Além desse limite, o checkpoint do sistema mais recente substitui o mais antigo.

Checkpoints e auto-rollback

Um recurso adicional é a reversão automática da configuração. Se antes de iniciar uma alteração na configuração, você inserir: checkpoint auto <número de minutos> e após expirar o tempo configurado, você será solicitado a confirmar as alterações. Caso contrário, ao final do período, a configuração voltará ao estado anterior ao que você configurou o checkpoint auto. Para este propósito, um ponto de verificação oculto é usado.

O principal objetivo desta opção é recuperar de um erro de configuração que desconectou você do dispositivo (especialmente se acessá-lo remotamente).

GUI

Para gerenciar o checkpoint no modo GUI:

Referências

https://community.arubanetworks.com/community-home/digestviewer/viewthread?MID=22966

https://techhub.hpe.com/eginfolib/Aruba/OS-CX_10.04/5200-6701/index.html#GUID-B43F99C4-8ADA-4934-9A6B-5DE0B20391FE.html

Switches ArubaOs – Configurando um Range de Interfaces

Os switches ArubaOS permitem o agrupamento de portas  para determinadas configurações, como por exemplo, atribuir uma VLAN a diversas portas ao mesmo tempo.

Segue abaixo uma dica que pode agilizar a vida de muitos administradores:

switch# configure terminal switch(config)# interface 9-10 ! agrupando  as portas 9 e 10 para configuração switch(eth-9-10)# untagged 2 ! configurando as portas para participarem da VLAN 2 switch(eth-9-10)# dldp enable ! habilitando o dldp nas portas 9 e 10 switch(eth-9-10)# exit switch(config)#

switch(config)# interface 11-15,17 ! agrupando  as portas 11, 12, 13, 14,15 e 17 para configuração switch(eth-11-15,17)# untagged vlan 5 ! configurando as portas para participarem da VLAN 5

Validando a configuração com o comando show running-config structured :

switch(config)# show running-config structured | begin interface 9
interface 9
   dldp enable
   untagged vlan 2
   exit
interface 10
   dldp enable
   untagged vlan 2
   exit
interface 11
   untagged vlan 5
   exit
interface 12
   untagged vlan 5
   exit
interface 13
   untagged vlan 5
   exit
interface 14
   untagged vlan 5
   exit
interface 15
   untagged vlan 5
   exit
interface 16
   untagged vlan 1
   exit
interface 17
   untagged vlan 5
   exit

Até logo!

802.3bt – Power Over Ethernet

O crescimento do mercado de dispositivos IoT e as mais recentes tecnologias de rede sem fio como Wifi 5 Wifi 6 (802.11ax) tem demandando uma atenção especial à escolha dos Switches com capacidade Power over Ethernet, tecnologia que combina envio de dados e energia elétrica sobre um único cabo Ethernet.

Ao eliminar a necessidade para cabos separados de dados e energia, o PoE fornece vantagens da simplicidade e economia de custos, além de adicionar novos recursos de controle de dispositivo inteligente.

Impulsionado pela necessidade dos novos dispositivos “Internet das coisas”, a tecnologia PoE evoluiu com o introdução do padrão IEEE 802.3bt. Esse novo padrão permite que Switches e dispositivos energizados operem acima de 30 Watts por porta, suportando agora de 60 até 90 Watts de PoE.

Padrões para Power Over Ethernet

Em 2003, o IEEE publicou o padrão 802.3af, que descreveu as características do Power over Ethernet (PoE) em até 15,4 W de energia, executando 10BASE-T e 100BASE-T. A energia é fornecida em dois dos quatro pares trançados nos cabos Cat 3 ou acima.

Em 2009, o IEEE introduziu o 802.3at, também conhecido como padrão PoE+. Esta atualização permitiu a entrega de até 30 W em 1000BASE-T suportado em CAT 5 ou 6. Enquanto o PoE + alterna suporte a dispositivos que requerem maior potência, o padrão também pode detectar dispositivos que exigem 13 watts ou menos para fornecer o nível de energia necessário.

Em 2013, o IEEE anunciou o grupo de estudo para a criação de 802.3bt, que definiu o PoE em quatro pares e inclui suporte para 10GBASE-T, 5GBASE-T e 2.5GBASE-T em CAT5e ou superior. Essa nova tecnologia usa todos os 4 pares em um cabo Ethernet para fornecer energia e dados no mesmo meio. O padrão IEEE 802.3bt foi finalizado em setembro de 2018 e define dois tipos de PoE:

• Tipo 3 que suporta até 60 Watts
• Tipo 4 que suporta até 90 Watts

Embora novos recursos tenham sido adicionados, a ideia é que o padrão funcione com dispositivos legados Tipo 1 e Tipo 2. Desde que o PSE seja capaz (em termos de potência) de suportar o PD e ambos sejam compatíveis com o padrão.

Dentre os novos dispositivos alimentados pelo padrão podemos destacar:

  • Edifícios inteligentes com IoT corporativa (iluminação LED conectada);
  • Cidades seguras (câmeras PTZ);
  • Quiosques;
  • Terminais de ponto de venda (POS)
  • Thin clientes
  • Access Points
  • Etc;

Referências

https://www.arubanetworks.com/assets/tg/TB_High-Power-PoE.pdf

https://en.wikipedia.org/wiki/Power_over_Ethernet

Vídeo: Como escolher um Switch PoE?

O crescimento do mercado de dispositivos IoT e as mais recentes tecnologias de rede sem fio como Wifi 6 (802.11ax) tem demandando uma atenção especial à escolha dos Switches com capacidade Power over Ethernet, tecnologia que combina envio de dados e energia elétrica sobre um único cabo Ethernet.

Ao eliminar a necessidade para cabos separados de dados e energia, o PoE fornece vantagens da simplicidade e economia de custos, além de adicionar novos recursos de controle de dispositivo inteligente. Nesse vídeo explicamos a diferença entre os padrões e damos dicas na hora de escolher qual switch PoE atenderá as suas demandas .

Até logo!

Vídeo: LLDP – Link Layer Discovery Protocol

O protocolo LLDP(802.1AB) permite que dispositivos de rede como Servidores, Switches e Roteadores, descubram uns aos outros. Ele opera na camada de enlace do modelo OSI (camada 2) permitindo que informações básicas como hostname, versão do Sistema Operacional , endereço da interface, entre outros, sejam aprendidas dinâmicamente por equipamentos diretamente conectados.

O mais bacana do Link Layer Discovery Protocol (LLDP) é a integração entre equipamentos de diversos fabricantes.

Obrigado.

Vídeo: TACACS+

O TACACS+ (Terminal Access Controller Access Control System) é um protocolo que provê autenticação centralizada para usuários que desejam acesso a equipamentos de rede. O protocolo fornece serviço modular para o AAA separando esses serviços (autenticação, autorização e contabilidade) de forma independente.

Os dispositivos baseados no Comware trabalham com o HWTACACS (HW Terminal Access Controller Access Control System) que é uma versão baseada na RFC 1492 do TACACS+ com interoperabilidade com todos os serviços que operam com TACACS+.

Nesse vídeo descrevemos a configuração do serviço HWTACACS

Se inscreva no canal para receber a notificação dos próximos vídeos.

Switches ArubaOS – Guia Rápido de Configuração

Para aqueles que estão começando a gerenciar equipamentos Aruba criamos uma lista de comandos para instalação e configuração de Switches com ArubaOS (parte dos comandos são aceitos na maioria dos modelos); os scripts são simples e bastante úteis!

Algumas funcionalidades podem ser configuradas de diferentes maneiras, mas tentaremos ser o mais abrangente possível nos scripts abaixo:
Continue reading