Comware 7: Configuração de VXLAN com BGP EVPN

O Ethernet Virtual Private Network (EVPN) é uma tecnologia VPN de Camada 2 VPN que fornece conectividade entre dispositivos tanto em Camada 2 como para Camada 3 através de uma rede IP. A tecnologia EVPN utiliza o MP-BGP como plano de controle (control plane) e o VXLAN como plano de dados/encaminhamento (data plane) de um switch/roteador. A tecnologia é geralmente utilizada em data centers em ambiente multitenant ( com múltiplos clientes e serviços) com grande tráfego leste-oeste.

A configuração do EVPN permite ao MP-BGP automatizar a descoberta de VTEPs, assim como o estabelecimento de tuneis VXLAN de forma dinâmica, a utilização de IRB (Integrated Routing and Bridging) anuncia tanto as informações  de Camada 2 e 3 para acesso ao host, fornecendo a utilização do melhor caminho através do ECMP e minimizando flood do trafego multidestination (BUM: broadcast,unicast unknown e multicast)  .

Em resumo o EVPN possui um address Family que permite que as informações de MAC, IP, VRF e VTEP sejam transportadas sobre o MP-BGP, que assim permitem aos VTEPs aprender informações sobre os hosts (via ARP/ND/DHCP etc.).

O BGP EVPN distribui e fornece essa informação para todos os outros pares BGP-EVPN dentro da rede.

Relembrando o VXLAN

O VXLAN prove uma rede de camada 2 sobreposta (overlay) em uma rede de camada 3 (underlay). Cada rede sobreposta é chamada de segmento VXLAN e é identificada por um ID único de 24 bits chamado VNI – VXLAN Network Identifier ou VXLAN ID.

A identificação de um host vem da combinação do endereço MAC e o VNI.  Os hosts situados em VXLANs diferentes não podem comunicar entre si (sem a utilização de um roteador). O pacote original enviado por um host na camada 2 é encapsulado em um cabeçalho VXLAN que inclui o VNI associado ao segmento VXLAN que aquele host pertence.

Os equipamentos que transportam os tuneis VXLAN são chamados de VTEP (VXLAN tunnel endpoints).

Quando um VXLAN VTEP ou tunnel endpoint comunica-se com outros VXLAN VTEP, um túnel VXLAN é estabelecido. Um túnel é meramente um mecanismo de transporte através de uma rede IP.

Todo o processamento VXLAN é executado nos VTEPs. O VTEP de entrada encapsula o tráfego com cabeçalho VXLAN, mais um cabeçalho UDP externo , mais um cabeçalhos IP externo, e então encaminha o tráfego por meio de túneis VXLAN. O VTEP do destino remove o encapsulamento VXLAN e encaminha o tráfego para o destino.

Os dispositivos da rede IP de transporte encaminham o tráfego VXLAN apenas com base no cabeçalho IP externo dos pacotes VXLAN (eles não precisam ter suporte à tecnologia VXLAN).

Uma imagem contendo screenshot, texto

Descrição gerada automaticamente

Um outro ponto importante é que a tecnologia VXLAN supera as limitações de apenas 4 mil domínios de broadcast fornecido por VLANs para até 16 milhões de domínios de broadcast com VNIs. Já para as limitações do Spanning-Tree que coloca os caminhos redundantes em estado de bloqueio, a tecnologia VXLAN permite a construção de todos os uplinks como parte de um backbone IP (rede underlay), utilizando protocolos de roteamento dinâmico para escolha do melhor caminho ao destino, assim fazendo uso do ECMP (Equal Cost Multipath) em uma topologia Spine-Leaf, por exemplo.

BGP EVPN

O BGP EVPN difere do comportamento “Flood and Learn” executado por tuneis VXLANs em diversas maneiras. Enquanto o tráfego multidestination (BUM: broadcast,unicast unknown e multicast) encaminhado pelo VXLAN sem o BGP EVPN necessita de utilizar grupos multicast, o EVPN permite a replicação da identificação dos dispositivos finais com o MP-BGP , assim como as informações do VTEP que ele está associado. As comunicações ARP para IPv4 também pode ser suprimida, aprimorando assim a eficiência do transporte dos dados.

LAB

No laboratório abaixo utilizamos os roteadores HP VSR no release R0621P18-X64, no EVE-NG.

Ambos os Spines estão configurados como VTEP e encaminharão o tráfego do VXLAN VNI 10. A instancia criada para esse cliente, chamamos de ‘clientea’.

O Spine está configurado como BGP Router Reflector fechando peerring com ambos Leafs. Nenhum Leaf fecha peering BGP entre si, somente como Spine.

Texto preto sobre fundo branco

Descrição gerada automaticamente

Configuração SPINE 1

#
 sysname Spine-01
#
interface LoopBack0
description OSPF_UNDERLAY
 ip address 192.168.0.1 255.255.255.255
#
interface LoopBack1
description BGP_EVPN_UNDERLAY
 ip address 192.168.0.11 255.255.255.255
#
interface GigabitEthernet1/0
description CONEXAO_LEAF3
 ip address 192.168.13.1  255.255.255.0
#
interface GigabitEthernet2/0
description CONEXAO_LEAF4
 ip address 192.168.14.1 255.255.255.0
#
ospf 1 router-id 192.168.0.1
 description UNDERLAY_OSPF
 area 0.0.0.0
  network 192.168.0.1 0.0.0.0
  network 192.168.0.11 0.0.0.0
  network 192.168.14.0 0.0.0.255
  network 192.168.13.0 0.0.0.255
#
bgp 65001
 group evpn internal
 peer evpn connect-interface LoopBack1
 peer 192.168.0.33 group evpn
 peer 192.168.0.44 group evpn
 #
 address-family l2vpn evpn
  undo policy vpn-target
  peer evpn enable
  peer evpn reflect-client
#

Configuração LEAF 3

#
 sysname Leaf-03
#
interface LoopBack0
description OSPF_UNDERLAY
 ip address 192.168.0.3 255.255.255.255
#
interface LoopBack1
description BGP_EVPN_UNDERLAY
 ip address 192.168.0.33 255.255.255.255
#
interface GigabitEthernet1/0
description CONEXAO_SPINE1
 ip address 192.168.13.3 255.255.255.0
 ospf network-type p2p
#
ospf 1 router-id 192.168.0.3
 description UNDERLAY_OSPF
 area 0.0.0.0
  network 192.168.0.3 0.0.0.0
  network 192.168.0.33 0.0.0.0
  network 192.168.13.0 0.0.0.255
#
bgp 65001
 peer 192.168.0.11 as-number 65001
 peer 192.168.0.11 connect-interface LoopBack1
 #
 address-family l2vpn evpn
  peer 192.168.0.11 enable
#
 vxlan tunnel mac-learning disable
#
 l2vpn enable
#
vsi clientea
 arp suppression enable
 vxlan 10
 evpn encapsulation vxlan
  route-distinguisher auto
  vpn-target auto export-extcommunity
  vpn-target auto import-extcommunity
  quit
#
interface GigabitEthernet3/0
 xconnect vsi clientea
#

Configuração LEAF 4

#
 sysname Leaf-04
#
interface LoopBack0
description OSPF_UNDERLAY
 ip address 192.168.0.4 255.255.255.255
#
interface LoopBack1
description BGP_EVPN_UNDERLAY
 ip address 192.168.0.44 255.255.255.255
#
interface GigabitEthernet2/0
description CONEXAO_SPINE2
 ip address 192.168.14.4 255.255.255.0
  ospf network-type p2p
#
ospf 1 router-id 192.168.0.4
 area 0.0.0.0
  network 192.168.0.4 0.0.0.0
  network 192.168.0.44 0.0.0.0
  network 192.168.14.0 0.0.0.255
#
bgp 65001
 peer 192.168.0.11 as-number 65001
 peer 192.168.0.11 connect-interface LoopBack1
 #
 address-family l2vpn evpn
  peer 192.168.0.11 enable
#
 vxlan tunnel mac-learning disable
#
 l2vpn enable
#
vsi clientea
 arp suppression enable
 evpn encapsulation vxlan
  route-distinguisher auto
  vpn-target auto export-extcommunity
  vpn-target auto import-extcommunity
  quit
  vxlan 10
  quit
#
interface GigabitEthernet3/0
 xconnect vsi clientea
#

Comandos Display bgp l2vpn evpn

Tela de computador com texto preto sobre fundo branco

Descrição gerada automaticamente

Comando display vxlan tunnel

Uma imagem contendo desenho

Descrição gerada automaticamente

Referências

R2702-HPE FlexFabric 5940 & 5930 Switch Series EVPN Configuration Guide

KRATTIGER, Lukas; KAPADIA, Shyam; JANSEN, David; Building Data Centers with VXLAN BGP EVPN – A Cisco NX-OS Perspective – 2017 CiscoPress

Wireless: MIMO e Multi-User MIMO

Uma das principais funcionalidades dos padrões WiFi 802.11n e 802.11ac reside na camada física do modelo OSI, que utiliza a tecnologia multiple-input, multiple-output (MIMO). A tecnologia oferece o uso de múltiplos rádios e antenas, chamados de radio chains. Os rádios MIMO transmitem múltiplos sinais ao mesmo tempo para tomar vantagem sobre o sinal multipath.

O Multipath é um fenômeno de propagação do sinal que resulta em dois ou mais caminhos do mesmo sinal sendo recebido por uma antena com a diferença de nanosegundos. Devido à natureza do espalhamento das ondas (do sinal RF) e comportamentos de propagação como reflexão, espalhamento, difração e refração poderão ocorrer no sinal, ocasionando o multipath.

As antenas com tecnologia MIMO utilizam-se do DSP (digital signal processing) para separar o sinal original transmitido. Em fato, múltiplos sinais enviados pelo transmissor MIMO podem chegar simultaneamente ao receptor, o sinal então pode ser cancelado e a performance será basicamente a mesma de um sistema não-MIMO.

Antigamente, os DSP’s, ou Processadores de Sinal Digital não eram tão desenvolvidos. Hoje,  os processadores possuem maior poder computacional e são capazes de recuperar o sinal transmitido ao receptor em diferentes intervalos de tempo.

Os DSP’s então têm a responsabilidade de receber os dados, ‘separar’ em diferentes partes, enviar cada parte por antenas diferentes – ao mesmo tempo, no mesmo canal. E fazer o processo inverso no receptor.

Radio Chains

Os rádios legados 802.11 transmitem e recebem sinal RF utilizando o sistema single-input, single-output (SISO), utilizando um radio chain que é um rádio que suporta toda arquitetura, incluindo mixers, amplificadores e conversores digital/analógico.

A tecnologia MIMO consiste em múltiplos radio chains onde cada um possuirá sua própria antena. Um sistema MIMO é caracterizado pelo número de transmissores e receptores utilizados por diversos radio chains. Por exemplo, um sistema 2×3 MIMO poderá consistir em 3 radio chains com 2 transmissores(TX) e 3 receptores(RX), já um sistema 3×3 MIMO poderá utilizar 3 radio chains para transmissão(TX) e recepção(RX).    

O uso de múltiplos transmissores em um sistema MIMO provem a transmissão de mais dados utilizando multiplexação espacial. O uso de múltiplos receptores aumenta a relação sinal ruído (SNR).

Multiplexação espacial

Um rádio MIMO tem habilidade de enviar fluxos de dados únicos de maneira independente. Cada fluxo de dados independente é conhecido como fluxo espacial (spatial stream) e cada fluxo único pode conter dados que são diferentes dos outros fluxos transmitidos por um ou mais rádios. Cada fluxo irá atravessar diferentes caminho caminhos até o receptor, chamado de diversidade espacial (spatial diversity). O envio de diversos fluxos independentes de um único dado utilizando spartial diversity é geralmente referenciado também como spatial multiplexing (SM) ou spatial diversity multiplexing (SDM).

O benefício de enviar fluxo diversos para um único dado é o aumento da largura de banda.

 Na imagem abaixo mostramos um AP MIMO 3×3:3 transmitindo 3 independentes fluxos de um único dado  para um cliente MIMO 3×3:3.

Geralmente os fabricantes utilizam a sintaxe de 3 números para indicar a capacidade de transmissão dos APs, por exemplo 3×3:2: O primeiro número informa a transmissão (TX), o segundo a recepção (RX) e o terceiro número representa a quantidade de fluxos únicos de dados podem ser enviados e recebidos.

Em boas condições, quando um AP 3×3:3 e um cliente 3×3:3 estão comunicando entre si, 3 fluxos espaciais podem ser utilizados para comunicação unicast. Entretanto, quando um AP 3×3:3 comunica com um cliente 2×2:2, somente dois fluxos espaciais serão utilizados para comunicação unicast. Isso será definido durante a conexão ao BSS (basic servisse set), o access point é avisado sobre as capacidades MIMO do cliente.

Multi-User MIMO

Os padrões 802.11n e 802.11ac permitem o uso do MIMO para transmissão de múltiplos fluxos  de dados transmitidos  em diferentes antenas ao mesmo tempo. O padrão 802.11ac também permite a comunicação simultanea com até 4 dispositivos utilizando a tecnologia MU-MIMO. Os rádios 802.11n não suportam MU-MIMO, mas podemos dizer que eles utilizam a tecnologia SU-MIMO (single-user MIMO).

Ambos, 802.11n e 802.11ac são capazes de transmitir múltiplos fluxos de dados, mas muitos equipamentos devido a limitações são capazes de receber apenas um fluxo de dados.

O objetivo do MU-MIMO é o uso de diversos fluxos espaciais quando possível, transmitindo  dados para múltiplos clientes ao mesmo tempo, seja na transmissão para um cliente de 4 fluxos espaciais ou 4 clientes utilizando um fluxo espacial cada,

Com o Multi-User MIMO (MU-MIMO), os APS podem utilizar a sintaxe de 5 números para indicar a capacidade de transmissão dos APs, assim como no MIMO, o primeiro número informa a transmissão (TX), o segundo a recepção (RX) e o terceiro número representa a quantidade de fluxos únicos de dados podem ser enviados e recebidos. O terceiro número representa quantos fluxos de dados de usuário único (SU) podem ser enviados ou recebidos. O quarto número refere quantos fluxos de múltiplos usuários (MU) podem ser transmitidos. Um quinto número é usado para representar um grupo MU-MIMO ou quantos clientes MU-MIMO estão recebendo transmissões ao mesmo tempo. Por exemplo 4×4:4:3:3. O AP pode transmitir e receber 4 fluxos espaciais para 1 usuário (SU-MIMO). Entretanto somente 3 fluxos espaciais podem ser enviados (MU-MIMO) para 3 clientes com capacidade MU-MIMO.

Referências

http://www.telecomhall.com/br/o-que-e-mimo.aspx

COLEMAN, David D.; WESTCOTT, David A. CWNA Certified Wireless Network Administrator – 5ª ed. Sybex – 2018 Aruba Certified Design Professional_ Official Certification

Aruba InstantOn – Configurando PPPoE

Em uma rede que oferece DHCP ao AP InstantOn o provisionamento é bem intuitivo e basicamente você necessita apenas utilizar o app ou efetuar o provisionamento através do portal web: http://www.comutadores.com.br/aruba-instant-on-configuracao-atraves-do-app/

Para a configuração do AP para estabelecer a conexão com o provedor atraves do PPPoE é necessário efetuar um procedimento diferente com alguns pontos de atenção:

1. A configuração do PPPoE deverá ser executada antes da integração do AP com a nuvem. Caso o AP já esteja integrado com a nuvem, a configuração do PPPoE não estará mais disponivel para modificações.

2. No entanto, se o AP perder a conectividade com a nuvem e forem detectadas falhas de PPPoE, você poderá acessar a WebUI local e atualizar as configurações novamente.

Configurando InstantOn com PPPoE

Siga as etapas abaixo para configurar o PPPoE na sua rede:

1. O Instant On AP deve estar conectado ao modem fornecido pelo provedor, mas não possui um endereço IP fornecido pelo servidor DHCP.

2. Quando o LED do AP ficar laranja sólido, o AP transmitirá um SSID InstantOn-AB:CD:EF aberto, após aproximadamente um minuto – em que AD: CD: EF corresponderá aos três últimos octetos do endereço MAC do AP.

3. Conecte seu notebook ou celular ao SSID e acesse o servidor da Web local em https://connect.arubainstanton.com. A página de configuração local da WebUI é exibida.

4. Em Endereçamento IP, selecione o botão de opção PPPoE.

5. Digite o nome de usuário e a senha do PPPoE fornecidos pelo seu provedor, nos respectivos campos.

6. Clique em Aplicar. O AP será reiniciado assim que a configuração do PPPoE for aplicada.

7. Aguarde as luzes LED piscarem em verde e laranja. Isso indica que o link PPPoE está ativo e estável. Você verá o status de integração do dispositivo agora com a mensagem ” Waiting to be onboarded.. “. Esta etapa pode levar mais cinco minutos, se o AP atualizar seu firmware durante o processo de reinicialização.

Referências

https://www.arubainstanton.com/techdocs/en/content/get-started/pppoe.htm

Wireless Aruba – Nomenclatura dos APs

Os pontos de acesso da Aruba possuem alto desempenho e são referências no mercado através de funcionalidades que utilizam otimização de RF com inteligência artificial, hardware e OS focados no fornecimento da melhor experiência ao usuário.

Os APs também agregam serviços que suportam dispositivos IoT com protocolos Wi-Fi, Zigbee, Bluetooth etc. Uma dica interessante é que os pontos de acesso possuem uma estrutura de nomes que podem ajudar a identificar a sua capacidade e função.

Os primeiros dígitos indicam o suporte ao padrão WLAN:

• 1: 802.11n
• 2: 802.11ac wave 1
• 3: 802.11ac wave 2
• 5: 802.11ax

Os dígitos seguintes indicam o tipo de ponto de acesso:

• 0: AP de entrada para ambiente indoor
• 1: Padrão para ambiente indoor
• 2,3 e 5: Indoor de alta densidade
• 6: AP de entrada para ambiente outdoor
• 7: Outdoor

Os últimos dígitos com valor ímpar representam os APs com antenas internas, já os APs com dígito final par, indicam os conectores para antenas externas. Caso o access point tenha uma letra no final como o H, significa que é designado para ambientes hospitalares, R para Teleworkers.

Caso tenha dúvidas referente a funcionalidades e especificações dos APs, procure o datasheet de cada modelo, nele é possível encontrar dos detalhes mais importantes do equipamento.

Por exemplo datasheet da serie Aruba AP 530: https://www.arubanetworks.com/assets/ds/DS_AP530Series.pdf

Já para os acessórios e antenas utilize o ordering guide de cada serie para identificar os itens necessários para implementação do ponto de acesso.

Por exemplo o ordering guide da serie Aruba AP 370: https://www.arubanetworks.com/assets/og/OG_AP-370Series.pdf

Referências

Aruba Certified Design Associate_ Official Certification Study Guide ( HPE6-A66)

Vídeo:VRRP Com preempt

O VRRP (Virtual Router Redundancy Protocol) permite a utilização de um endereço IP virtual em diferentes Switches/Roteadores. O funcionamento do VRRP é bem simples, dois ou mais dispositivos são configurados com o protocolo para troca de mensagens e então, o processo elege um equipamento MASTER e um ou mais como BACKUP.

Em caso de falha do Roteador VRRP Master o Roteador VRRP Backup assumirá rapidamente a função e o processo ocorrerá transparente para os usuários da rede.

Após a eleição do Switch Master para o grupo VRRP o equipamento continuará como MASTER até que um equipamento com maior prioridade (ou apresente falha) tome a função de MASTER, esse modo é chamado de preempção. Ao configurarmos o modo de preempção dentro do grupo VRRP, o Switch com melhor prioridade torna-se o MASTER.

Já no modo non-preemptive, mesmo que um equipamento BACKUP venha a ter maior prioridade na topologia VRRP, não acontecerá a troca do MASTER. O modo ajuda a evitar a troca entre equipamentos MASTER e BACKUP.

O modo de preempção é habilitado por padrão e é possível configurar o delay (opcional), parâmetro responsável pela preempção aguardar antes de assumir como MASTER VRRP

Até logo

Guia Básico para Configuração de Switches 3Com/HP 2.0

O Guia Básico para Configuração de Switches 3Com/HP 2.0 é um ebook que compila as principais funcionalidades de configuração e gerenciamento de Switches 3Com, H3C e HP baseados no Comware. O material está em português e ajudará você a dominar o funcionamento de Switches, administração e atualização do Comware, configuração de VLANs, roteamento, VRFs, Spanning-Tree, agregação de links, VRRP, empilhamento com IRF e mais.

Se você é iniciante no gerenciamento de switches, este ebook irá fornecer fundamentos que facilitarão a compreensão de outras funcionalidades e arquiteturas disponíveis para as redes campus e datacenter.

Caso o tema lhe seja familiar, o material ainda assim poderá ajudá-lo a sedimentar os conceitos fundamentais para administração de switches.

A compra poderá ser efetuada através do PagSeguro e oferece suporte para pagamentos via boleto, transferência bancária e cartão de crédito. 😉

Após a conclusão da compra e a confirmação do PagSeguro, encaminharemos o eBook para o e-mail cadastrado no site.

Para uma prévia… Clique aqui

VALOR 39,97

Pague com PagSeguro - é rápido, grátis e seguro!

Aruba Instant On – Configuração através do app

A Aruba lançou uma linha de Access Point para pequenas empresas chamada de Instant On, oferecendo visibilidade e estabilidade no acesso . O hardware utilizado é tão robusto quanto o dos IAP (ou atualmente chamados UAP), mas possui um firmware próprio dedicado para a serie. É muito importante não confundir os APs Aruba Instant On com os APs Aruba Instant. O Aruba Instant é uma solução corporativa com muitas opções e recursos avançados,  além de licenças adicionais necessárias para gerenciamento através da nuvem com o Aruba Central ou Controladora on-premises, enquanto o serviço do portal para gerenciamento do Aruba Instant On é um recurso incluso, sem custo adicional.

O Aruba Instant On é destinado a organizações menores, com menos de 100 usuários. Como o Aruba Instant On foi desenvolvido para simplificar a implementação da rede sem fio as configurações complexas para WLAN não estão disponíveis. As documentações da Aruba indicam o Instant On como ideal  para o varejo,  pequenos hotéis, hostels e escritórios.

A configuração dos APs é bem intuitiva e o administrador só precisa fornecer os nomes da rede, os números da VLAN (se houver) e as chaves pré-compartilhadas (PSK). Para os cenários com autenticação 802.1X , os APs Instant On também oferecem suporte à funcionalidade.

Um grande atrativo é a facilidade para implementação e gerenciamento – além do custo dos APs. Todo o gerenciamento é executado em nuvem através de um app ou um portal, sem licenciamento ou necessidade de controller externa (mesmo para um grupo de access points).

Entre as principais funcionalidades temos, o controle de RF (largura de canal, seleção de canal e banda 2.4Ghz e/ou 5Ghz), visibilidade/controle sobre os apps, suporte a PPPoE, Guest, Captive portal, suporte a alta disponibilidade e RADIUS proxy.

Configurando o Instant On através do App

  1. Conecte o AP Instant On, a rede com permissão de acesso à internet;
  2. Espere até as luzes do AP, estarem verde e âmbar;
Uma imagem contendo colar

Descrição gerada automaticamente

3 . Baixe o app na Apple Store ou Google Play;

Tela de celular com texto preto sobre fundo branco

Descrição gerada automaticamente

4. Abra o app e siga as instruções de instalação;

5. Para adicionar mais equipamentos conectados a rede cabeada ou via wireless clique no sinal de +;

Uma imagem contendo comida

Descrição gerada automaticamente

Pronto! Já é possível gerenciar e administrar os APs através do app ou portal web https://portal.arubainstanton.com/

Tela de celular com publicação numa rede social

Descrição gerada automaticamente

Referências

https://www.arubainstanton.com/products/indoor/

https://community.arubainstanton.com/t5/Blogs/Instant-On-version-1-4-is-here-and-it-is-all-about-flexibility/ba-p/1539

https://www.arubainstanton.com/files/SO_AIO.pdf